投稿

LG OLED TV Records Highest Monthly Sales Volume

LG Electronics’ strategy of OLED promotion and OLED TV price reduction appears to be working successfully.

 

On November 3, LG Electronics reported that the October sales exceeded 4,500 units, twice the volume of early 2015. Particularly, the sales volume of the first week of October exceeded 2,000 units and contributed to breaking the monthly sales volume record.

 

The OLED TV’s bigger price drops from the last week of September seem to have led the high sales volume in the first week of October. According to Amazon, 55inch FHD curved OLED TV fell to US$ 1,797 from October, approximately a 28% drop from August’s US$ 2,499. 55inch UHD curved OLED TV and UHD flat OLED TV also fell to the US$ 2,000 range, making the price difference with UHD LCD TV to be US$ 500. This price competitiveness is analyzed to contribute to the increased sales volume.

 

Aggressive marketing is also a factor for this sales volume growth. In September, LG Electronics installed OLED TV in 39 key airports in 23 countries including the US, Germany, and Russia, and revealed plan to install approximately 200 units of OLED TV until the end of October. Advertisement of OLED TV can also be easily seen in Korean subway stations. LG Electronics’ OLED promotion strategy, revealed during the Q2 performance announcement appears to be effective.

 

Recently, LG Electronics announced their aim to lead the OLED TV market through strengthening OLED=LG image and OLED TV and UHD TV product diversification.

 

 

LG 55inch OLED TV Price Changes

LG 55inch OLED TV Price Changes

[IMID 2015] UDC Develops OLED Patterning Technology with Less Masks

At present, FMM (Fine Metal Mask) is considered the main method for large area RGB OLED panel production. However, due to shadow effect, mask total pitch fluctuations, and mask slit tolerance issues, there is a yield limitation to this technology. This limitation increases as the resolution becomes higher; minimizing the number of FMM during the OLED panel production has been a key issue in RGB OLED production.

 

In SID 2014, through a paper titled “Novel Two Mask AMOLED Display Architecture”, UDC revealed a technology that can reduce the number of masks used in RGB-FMM method to 2 from previous 3.

 

Source: UDC, SID 2014

Source: UDC, SID 2014

 

As shown above, this technology coats yellow and blue subpixels using 1 mask each. Following this process, green and red color filters are applied above the subpixels. Pixels are formed as illustrated below.

 

Source : UDC, SID 2014

Source : UDC, SID 2014

 

UDC explained that this technology improves lifetime of the display overall and reduces energy consumption as blue voltage can be lowered. Additionally, tact time can be reduced through this technology, and increase the yield.

 

In IMID 2015, UDC presented research of the same title. However, the content of the presentation unveiled more developed research compared to 2014. First of all, in 2014, UDC announced that the panel’s lifetime could be improved by 2 times compared to the RGB method. In IMID 2015, UDC’s announcement changed the figure to 3.3 times increased lifetime.

 

UDC also revealed that the technology can be actualized through printing method, and has the advantage of being able to print 2 rows of pixels at once. UDC announced that this is most suitable when OVJP (Organic Vapor Jet Printing) applies the printing method.

 

A new technology called SPR (Sub-Pixel Rendering) was also announced by UDC in this paper. The 2014 SID paper included a method that did not uses SPR. As shown below in figure 1, 4 subpixels of RGY and B are used per pixel.

 

[Fig. 1], Source: UDC, IMID 2015

[Fig. 1], Source: UDC, IMID 2015

During IMID 2015, UDC presented APR technology applied pixel structure. Figure 2 shows 3 subpixels per pixel.

 

[Fig. 2], Source: UDC, IMID 2015

[Fig. 2], Source: UDC, IMID 2015

In this case, as the pixels can be arranged as shown in figure 3, smaller number of subpixels can be used.

 

[Fig. 3], Source: UDC, IMID 2015

[Fig. 3], Source: UDC, IMID 2015

UDC announced that because APR technology allows the number of subpixels per pixel to be reduced to 3 or less, the number of data lines and TFT per pixel can also be reduced together.

 

UDC explained that this technology can be applied regardless of the display area or resolution, and will be able to be applied to different types of panels.

 

Hyundai Motors's Munhyun Kim, IMID 2015

[IMID 2015] Hyundai Motors, “OLED Application of Automotive Display, Soon to be a Reality”

On 19 August at IMID 2015 (August 18 – 21), a keynote speaker Munhyun Kim of Hyundai Motors forecast that automotive display market will become more active, digitalized, and simplified. Kim categorized automotive display applied sectors into 4: cluster, HUD (head-up display) and CID (central information display), and RSE (rear seat entertainment).

 

Kim revealed that technological trends of cluster are full color, high resolution, and customizability, particularly it can be customized to suit the user through diverse modes. Full color, high resolution, and AR (augmented reality) are the main trends for HUD. Distance guide, direction guide, and lane guide were suggested as examples of AR. CID’s main technological trends are integrated display and insertion of diverse functions. OLED applied CID is being researched. Enlargement, individuality, and mobility were mentioned as technological trends of RSE.

 

Kim revealed that compared to automotive market which records 3-6% of growth each year, cluster and CID are forecast to grow by 10% a year. He added that although the weight of automotive LCD within the total LCD market is slight, the automotive OLED’s importance is forecast to grow to record 30% or over in 2017.

 

In the past, 4inch or larger display were mainly installed in vehicles, but it is estimated that small display of less than 4inch will be increasingly introduced. Kim also added that he expects automotive display in diverse shapes and forms will be applied in future.

 

In CES 2015, Hyundai Motors exhibited AR grafted HUD, 3D-gesture control technology, wearable devices connected to the vehicle, next generation infortainment technology, and ADAS (advanced driver assistance systems).

 

Kim expected the OLED display application will actively occur in the order of cluster, HUD, CID, and entertainment display. He also evaluated OLED panel that can easily actualize flexibility higher than LCD panel.

 

Hyundai Motors's Munhyun Kim, IMID 2015