CYNORA focuses on blue TADF-materials

During the 2nd OLED Korea Conference, the Germany-based CYNORA has presented its current status in blue TADF-based OLED-emitter development.

CYNORA focuses on materials that are able to convert triplet excitons into light via Thermally Activated Delayed Fluorescence (TADF).  While efficient emitters for red and green are already commercially available from other suppliers, there is still no blue OLED material available to match the strong demand for the industry. TADF technology is a promising candidate for highly efficient and stable blue emitter systems. TADF-based emitters offer up to four times better efficiency than currently used materials, which are based on fluorescence.

CYNORA has shown its current TADF-materials for sampling with good color points in blue (CIE 0.16, 0.17) and sky-blue (CIE 0.19, 0.36). The presented materials confirm that blue emission and high efficiency can be combined. CYNORA is focusing its current material development on vacuum-processing following the customer request, as represented in large investments into this deposition technology by the major AMOLED displays makers.

In order to provide more sample materials to customers, while reducing the cycle times for material improvements, CYNORA is growing its infrastructure. The company is extending the device testing capacity by setting up a new cluster tool and hiring continuous experts for the synthesis and device department. Due these actions CYNORA’s emitter throughput will increase significantly.

The strong interest from the OLED industry in TADF-based blue emitters systems has been once more confirmed at this UBI event and allowed CYNORA to further extend its network with the Korean OLED community.  The present expansion of CYNORA management operations, consistently sampling and improvement of blue OLED materials are further strengthening the position of CYNORA as a technology leader in the field of TADF emitter systems.

[Lighting Japan 2016] What is the Key Issue of Solution OLED Materials?

In Lighting Japan 2016 (January 13-16) conference, Sumitomo Chemical and Merck revealed recently developed soluble OLED materials performance results.

 

The soluble OLED materials efficiency published in this conference reached ≥ 65% of UDC’s evaporation materials; particularly, Sumitomo Chemical’s red achieved ≥ 85%, and green reached ≥ 88% of UDC’s evaporation materials efficiency. Lifetime (LT 95) results were not as good as efficiency with red’s 25% and green’s approximately 40% (average).

 

Sumitomo Chemical and Merck both revealed that although in terms of efficiency the soluble materials almost caught up to evaporation materials, but lifetime requires further development.

 

Solution process is a method that allows for large area OLED panel production in RGB method using ≥ Gen8 manufacturing equipment. Key panel companies are actively carrying out research development, and the performance of soluble OLED material is considered the biggest issue. According to Solution Process OLED Report 2015, published by UBI Research, when solution process is applied the material cost can be approximately 40% reduced compared to the current evaporation process using large area OLED panel. The timing for the solution process application to mass production is expected to be decided depending on the development speed of soluble OLED materials.

 

OLED Materials Performance Comparison

OLED Materials Performance Comparison

Heraeus Materials Reveals Innovative Conductive Polymer Transparent Electrode

Heraeus Materials Korea’s Jinwhan Kim

Heraeus Materials Korea’s Jinwhan Kim

 

By Choong Hoon Yi

 

At 2016 Production/Process Technology Development and Application Cases by Flexible Transparent Electrode and Film Materials Seminar (December 17), Heraeus Materials Korea’s Jinwhan Kim revealed new product of Clevios, Heraeus’ main transparent electrode series, through a presentation titled Conductive Polymer-based Flexible Transparent Electrode Production and Process Technology Development Trend and Application Examples.

 

Transparent electrode possesses high transmittance of ≥ 80% and conductivity of ≤ 500 Ω/ㅁ, and is being used as electronic component for displays including OLED electrode. The transparent electrode can be mainly categorized into 3 types: thin metal film, carbon allotrope, and conductive polymer. Heraeus Materials is considered a major company producing conductive polymer together with SKC.

 

Although many people regard Heraeus as a company producing gold and silver bullion, Kim explained that Heraeus is focusing on display and semiconductor related chemicals. Particularly, Kim added that Clevios, Heraeus’ representative product, contains over 20 years of PEDOT materials know-how and experience.

 

Clevios™ P, the existing PEDOT:PSS product, is mostly produced in Leverkusen, Germany, and essentially uses thermal curing. Kim revealed that when Clevios™ P is coated, it shows bluish hue and the degree changes depending on the thickness. The conductivity is 1,000 S/cm and has the refractive index similar to glass.

 

While the existing Clevios product has sufficient flexibility to be applied to flexible products, Kim reported that future flexible display requires transparent electrode with higher specifications, emphasizing the importance of product development, and introduced new product Clevios™ HY.

 

High conductive transparent electrode, Ag nanowire was added to the existing Clevios PEDOT:PSS product to produce Clevios™ HY. AG nanowire typically has rough surface but Clevios PEDOT:PSS corrects this by making it flat. The highly flexible new product has relatively low sheet tension of less than 100 Ω/ㅁ. Kim emphasized that this new product can be turned to solvent base and used in printing process, revealing they are developing Clevios™ HYJET, a PEDOT:PSS transparent electrode for printing use.

[2015 OLED Evaluation Seminar] How can OLED Emitting Materials, Components and Other Materials Markets Survive?

By Choong Hoon Yi

 

At 2015 OLED Evaluation Seminar (December 4) hosted by UBI Research, Sung-Kee Kang, DS Hi-Metal’s CSO, reported that OLED display market has to expand through OLED TV and new applications in order for OLED emitting materials companies to grow.

 

Presenting under the title of ‘OLED Organic Material Technology, Industry Trend’, Kang introduced the current OLED emitting material value chain. He explained that within OLED emitting materials market, there are too many players considering the current volume and overall OLED display market expansion is a necessity. However, he added that for OLED display to compete against LCD display, OLED TV market has to expand successfully, and new application that utilizes OLED’s characteristics is needed.

 

In order to expand the market, development of OLED emitting materials and other materials is urgently in demand that meet the required conditions. Kang emphasized that at present new technology seeds promotion for the next OLED is needed as well as development of OLED emitting materials, and other flexible/transparent related materials with new functions.

 

Considering LG’s active OLED TV marketing, Apple’s interest in OLED panel application, and possibility for Samsung to apply AMOLED to all models among others, OLED market is anticipated to rapidly grow. Together with this, the industries of OLED emitting material and component/other materials with new functions are also expected to considerably grow.

[Merck Display Insight 2015] Merck Reveals Latest Performance Results for Red and Green Solution Process Materials

On November 5, during the 16th Merck Display Insight 2015 seminar, Merck revealed the development results for solution process materials. The solution process materials presented were red and blue materials’ efficiency, lifetime, and CIE.

 

At present UDC’s evaporation materials are being used in OLED mass production. UDC’s evaporation material performance, published on the company website, were compared with Merck’s materials. Merck’s red material’s efficiency was 19.1cd/A, lifetime was 5,900 hours, and the CIE was (0.66, 0.34) which were approximately 66% of UDC material’s efficiency (29cd/A), 26% of UDC material’s lifetime (23,000 hours), and showed equal CIE.

 

For Merck’s green material, efficiency was 76.4cd/A, lifetime was 5,200 hours, and the CIE was (0.32, 0.63). These were approximately 89% of UDC’s green’s 85cd/A of efficiency, and 29% of 18,000 hours of lifetime. The CIE were similar with UDC’s (0.31, 0.63).

 

The comparison of the published materials’ performance, efficiency of solution process materials are developed to the similar levels as evaporation materials, but material lifetime require more research. Through this seminar, Merck revealed that the LT95’s solution process material’s lifetime will be solution process OLED’s most crucial challenge.

 

During the question and answer part of the poster session, Merck also revealed positive outlook that full stack solution process OLED product will be produced within the next 3-4 years.

 

Despite being one of the latecomers within the OLED material business, Merck is producing notable results in solution process material development and OLED material sales. This year’s sales results are anticipated to be higher than expected.

 

According to 2015 Solution Process OLED Annual Report, published by UBI Research, the key issue for solution process OLED is solution process emitting material performance. The solution process red and green’s efficiency reached to the similar levels as evaporation material. However, lifetime showed to be ≤approx. 30% of evaporation material in LT95. On the other hand, solution process blue is analyzed to be falling behind evaporation material in both lifetime and efficiency. As such, it is estimated that solution process OLED will be mass produced using the hybrid structure where red and green are formed through printing, and blue is formed through evaporation.

What is Solution Process OLED’s Key Issue?

In the 2015 Display Printed Electronics Seminar held in The K Hotel in Seoul on October 7, Dankook University’s Professor Byung Doo Chin and Korea Research Institute of Chemical Technology’s Dr. Jaemin Lee gave presentations. They discussed key issues of solution process OLED; Professor Chin examined technological issues of print OLED/PLED device while Dr. Lee discussed technology trend of solution process OLED device.

 

Professor Chin reported that of the materials being used in current solution process, red, and green progressed greatly in terms of efficiency and lifetime. However, he explained that as blue’s efficiency and lifetime are lower than the other 2 colors, unless these issues improve, white actualization, as well as blue actualization, is difficult and panel cannot properly perform.

 

Material research development can occur for evaporation OLED only through material synthesis and purification. However, for solution process OLED, turning the materials to ink has to be additionally considered. Dr. Lee announced that diverse collaboration are happening between material and ink related companies for these reasons.

 

In the seminar, Professor Chin and Dr. Lee agreed that the key to the solution process OLED development is material characteristics development. According to the solution process material traits presented by Sumitomo Chem. and DuPont, while red and green traits are fast catching up to ones used for evaporation OLED, this is not true for blue. Despite these disadvantages, solution process OLED is a key technology that can produce large area RGB OLED panel using Gen8, or higher, manufacturing equipment; continued research development of solution process technology is expected in future.

DuPont Displays Opens OLED Materials Scale-Up Facility for Next Generation TVs

On 30 September (local time), DuPont Displays announced the opening of a state-of-the-art, scale-up manufacturing facility designed to deliver production scale quantities of advanced materials that enable large-format, solution-based printed OLED displays.

 

These materials are designed to help manufacturers develop OLED displays that are brighter, more vivid, longer lasting and significantly less expensive than the OLED TVs on the market today.  The facility is located at the DuPont Stine-Haskell Research Center (Stine-Haskell) in Newark, Del., near DuPont’s global headquarters in Wilmington, US.

 

DuPont’s new scale-up facility is sized to meet the future growth expectations of the OLED TV industry, which analysts predict will increase by over 70 percent for the next several years and will require large quantities of highly sophisticated OLED materials. This new OLED facility at Stine-Haskell has large-scale formulation systems and can support simultaneous production of multiple product lines.

 

“Materials are critical to the performance of an OLED TV and we are confident that DuPont has the best performing solution OLED materials available in the market today,” said Avi Avula, global business director, DuPont Displays.  “Our vision is that OLEDs will become the display standard and to make that vision a reality, we are focused on helping our customers bring the cost of large sized OLED TVs down to less than $1000 by 2020.”

Universal Display and LG Display Announce Entry into Long-Term OLED Patent License and Supplemental Material Purchase Agreements

Universal Display Corporation (Nasdaq:OLED), enabling energyefficient displays and lighting with its UniversalPHOLED® technology and materials, and LG Display Co., Ltd. (NYSE: LPL), the world’s leading innovator of display technologies, today announced the signing of a new OLED Technology License Agreement and Supplemental Material Purchase Agreement. The agreements run through December 31, 2022.
Today’s announcement builds on a long-term relationship between the two companies. Under the license agreement, Universal Display has granted LG Display non-exclusive license rights under various patents owned or controlled by Universal Display to manufacture and sell OLED display products. In consideration of the license grant, LG Display has agreed to pay Universal Display license fees and running royalties on its sales of these licensed products over the term of the agreement. Additionally, Universal Display will supply phosphorescent materials to LG Display for use in its licensed products.
“We are excited to enter into these agreements with our long-term partner LG Display, a global technology innovator who is leading the charge for OLED TVs, evidenced by its recent CES showcase of new 4K models ranging from 55″, 65″ and 77″ in flexible, curved and flat form actors,” said Steven V. Abramson, President and Chief Executive Officer of Universal Display Corporation. “The growth of our relationship demonstrates the continued acceptance of our OLED technology and phosphorescent materials by the display industry for cutting-edge, high performance, energy-efficient commercial OLED displays. We look forward to the continued collaboration in support of LGD’s advancements in expanding the thriving OLED product roadmap, including the advent of new form factors that redefine what a display can and will be.”
“This is a win-win partnership for both companies. We expect this strategic alliance with Universal Display will bring synergies in accelerating the growth of OLED technology, and based on strengthened OLED business, LG Display is committed to deliver differentiated products to customers and the market,” said Sang Deog Yeo, President and Head of OLED business unit of LG Display.

LG Display, strategic partnership for OLED business with Japanese firm Idemitsu Kosan

LG Display (CEO Sang-beom Han, 韓相範 / www.lgdisplay.com) and OLED materials firm Idemitsu Kosan (CEO 月岡隆, Takashi Tsukioka, hereinafter “Idemitsu”) entered into the agreement on the 11th about the ‘mutual cooperation concerning OLED technology and related patent license’ to further strengthen their competitiveness in the OLED industry.

 

In 1997, Idemitsu developed what was then the world’s brightest blue light organic emitting material for OLED and since then, every effort has been made to develop high-tech OLED materials and diverse device technologies based on its own molecular design and organic synthesis technologies. Consequently, Idemitsu Kosan, the original OLED material technology firm of a top global level possesses numerous major patents in relation to the OLED technology.

 

Through this strategic partnership, LG Display will be accessible to the excellent OLED materials and device structures of the Idemitsu Kosan which will lead to consolidate the research, product development and production of the OLED for TV and flexible OLED, and this eventually will accelerate the expansion of OLED market. By providing high performance OLED materials to the LG Display and collaborating in terms of technology development and commercialization, Idemitsu Kosan is expected to secure leading global clients in the display field.

 

The industry prospects that the two companies have made a chance to perform sound leadership by maximizing the synergy in the OLED business through this partnership.

 

Sang-deok Yeo, president of LG Display OLED Business unit said that, “Through the latest partnership, LG Display is to gain momentum to create OLED TV market on the basis of the OLED related patents of Idemitsu Kosan as well as accelerate the developments of flexible and transparent OLEDs” and added that “This win-win collaborative relationship is expected to have a huge synergy effect on OLED business for both companies.”

Yamagata University develops low-voltage blue phosphorescence material

According to a Japanese media, Nikkei, organic device engineering professor Junji Kido of Yamagata University has developed a low-voltage blue phosphorescent material. It is a material that can be driven with a low-voltage of 2.5V and its external quantum efficiency is high as 30%.

Yamagata University has published a paper on a new material on a science magazine, 『Advanced Materials』, issued on June 27th, 2014. The peak of this materials wavelength is 474nm (band gap is 2.62eV) and the reduction of quantum efficiency is small in high brightness zone. Also, the external quantum efficiency is 30% in 100cd/m2 and 20% efficiency can be maintained in high brightness of 10,000cd/m2.

Yamagata University actively develops TADF (Thermal Activation Delay Fluorescent) technology, which makes fluorescent material to realize the similar efficiency close to phosphorescent material, and white OLED using printing technology other than the blue phosphorescent material.